[image: image1.png]CWM Analytical Review

(from OMG CWM specification document)

Revision 1.0, 21.06.2002

Author Ruslan Pashkoff

Introduction

The amount of data in a given organization doubles every five years. Most organizations suffer from an overabundance of redundant and inconsistent data that is difficult to manage effectively, to access, and to use for decision making purposes.

Data warehousing provides an excellent approach for transforming data into useful and reliable information to support the business decision making process and to achieve business intelligence. One of the most important aspects of data warehousing is metadata. Metadata is used for building, maintaining, managing, and using the data warehouse.

Unfortunately, the proliferation of data management and analysis tools has resulted in almost as many different representations and treatments of metadata as there are tools.

Since every data management and analysis tool requires different metadata and a different metadata model (known as a metamodel) to solve the data warehouse metadata problem, it is simply not possible to have a single metadata repository that implements a single metamodel for all the metadata in an organization. Instead, what is needed is a standard for interchange of warehouse metadata.

The CWM is a response to these needs. It provides a framework for representing metadata about data sources, data targets, transformations and analysis, and the processes and operations that create and manage warehouse data and provide lineage information about its use.

The CWM Metamodel consists of a number of sub-metamodels which represent common warehouse metadata in the following major areas of interest to data warehousing and business intelligence (see Figure 1):

· Data Resources.These include metamodels that represent object-oriented, relational, record, multidimensional, and XML data resources. In the case of object-oriented data resource, CWM reuses the base object model.
· Data Analysis. These include metamodels that represent data transformations, OLAP (On-line Analytical Processing), data mining, information visualization, and business nomenclature.

· Warehouse Management. These include metamodels that represent warehouse processes and results of warehouse operations.

The UML standard defines a rich, object oriented modeling language that is supported by a range of graphical design tools. The MOF standard defines an extensible framework for defining models for metadata, and providing tools with programmatic interfaces to store and access metadata in a repository. The XMI standard allows metadata to be interchanged as streams or files with a standard format based on XML.

The complete architecture offers a wide range of implementation choices to developers of tools, repositories and object frameworks. XMI in particular lowers the barrier to entry for the use of OMG metadata standards.

Key aspects of the architecture include:

· A four layered metamodeling architecture for general purpose manipulation of metadata in distributed object repositories. See the MOF and UML specifications for more details

· The use of UML notation for representing metamodels and models

· The use of standard information models (UML) to describe the semantics of object analysis and design models

· The use of MOF to define and manipulate metamodels programmatically using fine grained CORBA interfaces. This approach leverages the strength of CORBA distributed object infrastructure.

· The use of XMI for stream based interchange of metadata This specification mainly consists of definitions of metamodels in the following domains:

· Object model (a subset of UML)

· CWM foundation

· Relational data resources

· Record data resources

· Multidimensional data resources

· XML data resources

· Data transformations

· OLAP (On-line Analytical Processing)

· Data mining

· Information visualization

· Business nomenclature

· Warehouse process

· Warehouse operation

This specification defines these metamodels and provides proof of concept that covers key aspects of CWM. The specification represents the integration of work currently underway by the submitters and supporters in the areas of warehouse metadata management in distributed object environments. The submitters intend to commercialize the CWM technology within the guidelines of the OMG.

[image: image2.png]
Figure 1. The CWM Metamodel.
The CWM Metamodel uses packages and a hierarchical package structure to control complexity, promote understanding, and support reuse. The model elements are contained in the following packages:

ObjectModel package

Core package

Contains classes and associations that form the core of the CWM object model, which are used by all other CWM packages including other ObjectModelpackages.

Behavioral package

Contains classes and associations that describe the behavior of CWM objects and provide a foundation for describing the invocations of defined behaviors.

Relationships package

Contains classes and associations that describe the relationships between CWM object.

Instance package

Contains classes and associations that represents instances of CWM classifiers.

Foundation package

Business Information package

Contains classes and associations that represent business information about model elements.

Data Types package

Contains classes and associations that represent constructs that modelers can use to create the specific data types they need.

Expressions package

Contains classes and associations that represent expression trees.

Keys and Indexes package

Contains classes and associations that represent keys and indexes.

Software Deployment package

Contains classes and associations that represent how software is deployed in a data warehouse.

Type Mapping package

Contains classes and associations that represent mapping of data types between different systems.

Resource package

Relational package

Contains classes and associations that represent metadata of relational data resources.

Record package

Contains classes and associations that represent metadata of record data resources.

Multidimensional package

Contains classes and associations that represent metadata of multidimensional data resources.
XML package

Contains classes and associations that represent metadata of XML data resources.

Analysis package

Transformation package

Contains classes and associations that represent metadata of data transformation tools.

OLAP package

Contains classes and associations that represent metadata of on-line analytical processing tools.

Data Mining package

Contains classes and associations that represent metadata of data mining tools.

Information Visualization package

Contains classes and associations that representing metadata of information visualization tools.

Business Nomenclature package

Contains classes and associations that represent metadata on business taxonomy and glossary.

Management package

Warehouse Process package

Contains classes and associations that represent metadata of warehouse processes.

Warehouse Operation package

Contains classes and associations that represent metadata of results of warehouse operations.

For our task all CWM metamodels below (may be except Information Visualization) are usefull. More detailed description of metamodels can be found in Common Warehouse Metamodel (CWM) OMG Specification document (http://www.omg.org/cwm).

ObjectModel
The CWM ObjectModel provides basic constructs for creating and describing metamodel classes in all other CWM packages. The ObjectModel is a subset of UML that includes only those features that are needed for creating and describing the CWM. Defining a subset of UML containing only those things needed by CWM allows the CWM to leverage UML’s concepts and modeling power without burdening implementations with the full breadth of UML’s capabilities.

Core Metamodel

The ObjectModel Core metamodel contains basic metamodel classes and associations used by all other CWM metamodel packages, including other ObjectModel packages.

Behavioral Metamodel

The Behavioral metamodel collects together classes and associations that describe the behavior of CWM types and provides a foundation for recording the invocations of defined behaviors.

Relationships Metamodel

The Relationships metamodel collects together classes and associations that describe the relationships between object within a CWM information store. The Relationships metamodel describes to types of relationships: association and generalization. Association relationships record linkages between model elements. These linkages may represent simple linkages between model elements or aggregation ("is part of") relationships between model elements; aggregation relationships come in two forms -- shared and composite. Associations have two or more named ends that link them to instances of the classes connected by the association.

Generalization relationships record arrangements of model elements into type hierarchies in a parent/child (or "is type of") fashion. Child types are said to "specialize", "subclass" or "subtype" their parental types, represent a subset of parental instances that fulfill the definition of the child type, and inherit the structural features (Attributes, AssociationEnd) and behavioral features (Operations, Methods) of their parents. Parental types are said to "generalize" their child types or to be "superclasses" or "supertypes" of their children. CWM generalization hierarchies support multiple inheritance; that is, child types may have more than one parental type and inherit the union of the features of all their parental types. Although called "hierarchies", multiple inheritance actually represents a directed acyclic graph of parental and child types.

Instance Metamodel

In addition to the metadata normally interchanged with CWM, it is sometimes useful to interchange specific data instances as well. The ObjectModel’s Instance metamodel allows the inclusion of data instances with the metadata.

Foundation

The Foundation is a collection of metamodel packages that contain model elements representing concepts and structures that are shared by other CWM packages. Consequently, Foundation model elements often have a more general-purpose nature than model elements found in packages at higher CWM organizational levels. Foundation model elements in a particular metamodel package are not necessarily intended to describe fully all aspects of concepts and structures they represent. Rather, they are meant to provide a common foundation which other packages can extend as necessary to meet their specific needs. Foundation model elements differ from ObjectModel elements because they are specific to the goals and purposes of CWM. ObjectModel elements, in contrast, are of a general purpose nature and applicable in diverse areas.

Business Information Metamodel

The Business Information Metamodel provides general purpose services available to all CWM packages for defining business-oriented information about model elements. The business-oriented services described here are designed to support the needs of data warehousing and business intelligence systems; they are not intended as a complete representation of general purpose business intelligence metamodel. Business Information Metamodel services support the notions of responsible parties and information about how to contact them, identification of off-line documentation and support for general-purpose descriptive information. Three CWM classes “anchor” these services: ResponsibleParty, Document and Description, respectively.

DataTypes Metamodel

The CWM DataTypes metamodel supports definition of metamodel constructs that modelers can use to create the specific data types they need. Although the CWM Foundation itself does not contain specific data type definitions, a number of data type definitions for widely used environments are provided (in the CWM Data Types chapter) as examples of the appropriate usage of CWM Foundation classes for creating data type definitions.

Expressions Metamodel

The CWM Expressions metamodel provides basic support for the definition of expression trees within the CWM. The intent of the Expressions metamodel is to provide a place for other CWM packages (such as Transformation) and CWM compliant tools to record shared expressions in a common form that can be used for interchange and lineage tracking.

KeysIndexes Metamodel

Keys and indexes as means for specifying instances and for identifying alternate sortings of instances are represented in the CWMFoundation so that they can be shared among the various data models that employ them. The CWM Foundation defines the base concepts (uniqueness and relationships implemented as keys) upon which more specific key structures can be built by other CWM and tool-specific packages.

SoftwareDeployment Metamodel

The Software Deployment package contains classes to record how the software in a data warehouse is used.

A software package is represented as a SoftwareSystem object, which is a subtype of Subsystem. A SoftwareSystem may reference one or more TypeSystems that define the datatypes supported by the SoftwareSystem. The mappings between datatypes in different TypeSystems may be recorded as TypeMappings, as described in TypeMapping metamodel.

The separate components of a software package are each represented as Components that are either owned or imported by the SoftwareSystem. When a SoftwareSystem is installed, the deployment is recorded as a DeployedSoftwareSystem and a set of DeployedComponents.

A DeployedComponent represents the deployment of a specific Component on a specific computer. Dependencies between DeployedComponents on the same computer may be documented as Usage dependencies between them.

Individual computers are represented as Machine objects, located at a Site. A Site represents a geographical location, which may be recorded at any relevant level of granularity, e.g. a country, a building, or a room in a building. Hierarchical links between Sites at different levels of granularity may be documented.

A DataManager is a DeployedComponent such as a DBMS or file management system that provides access to data. It may be associated with one or more data Packages identifying the Schema, Relational Catalog, Files or other data containers that it provides access to.

A DataProvider is a DeployedComponent that acts as a client to provide access to data held by a DataManager. For example, an ODBC or JDBC client on a specific Machine would be represented as a DataProvider. A DataProvider may have several ProviderConnections, each identifying a DataManager that may be accessed using the DataProvider.

If a DataProvider uses a name for a data Package that is different from the actual name used by the DataManager, a PackageUsage object can be added to record this.

As a DataProvider is a subtype of DataManager, it is possible for a DataProvider to access data from a DataManager which is actually a DataProvider acting as a client to yet another DataManager.

The model for the Software Deployment package is shown in three diagrams. The first diagram shows the objects related to software deployment, while the second diagram displays the DataManager and DataProvider area of the model. The third diagram shows the inheritance structure for all the classes in the Software Deployment package.

TypeMapping Metamodel

The TypeMapping package supports the mapping of data types between different systems. The purpose of these mappings is to indicate data types in different systems that are sufficiently compatible that data values can be interchanged between them. Multiple mappings are allowed between any pair of types and a means of identifying

the preferred mapping is provided.

Resourse

Relational
The Relational package describes data accessible through a relational interface such as a native RDBMS, ODBC, or JDBC. The Relational package is based on the [SQL] standard section concerning RDBMS catalogs.

The scope of the top level container, Catalog, is intended to cover all the tables a user can use in a single statement. A catalog is also the unit which is managed by a data resource. A catalog contains schemas which themselves contain tables. Tables are made of columns which have an associated data type.

The Relational package uses constructs in the ObjectModel package to describe the object extensions added to SQL by the [SQL] standards. The Relational package also addresses the issues of indexing, primary keys and foreign keys by extending the corresponding concepts from the Foundation packages.

Record
The Record package covers the basic concept of a record and its structure. The package takes a broad view of the notion of record, including both traditional data records such as those stored in files and databases, as well as programming language structured data types. In fact, the concepts described here can be used as a foundation for extension packages describing any information structure that is fundamentally hierarchical, or "nested," in nature such as documents, questionnaires, and organizational structures.

Multidimensional
The CWM Multidimensional metamodel is a generic representation of a multidimensional database. Multidimensional databases are OLAP databases that are directly implemented by multidimensional database systems. In a multidimensional database, key OLAP constructs (dimensions, hierarchies, etc.) are represented by the internal data structures of a multidimensional database server, and common OLAP operations (consolidation, drill-down, etc.) are performed by the server acting on those data structures. Multidimensional databases are often classified as “physical OLAP” or “MOLAP" (memory-based OLAP) databases.

Multidimensional databases offer enhanced performance and flexibility over OLAP systems that simulate multidimensional functionality using other technologies (e.g., relational database or spreadsheet):

· Performance: Multidimensional databases provide rapid consolidation times andformula calculations, and consistent query response times regardless of query complexity. This is accomplished, in part, through the use of efficient cell storage techniques and highly-optimized index paths.

· Flexibility: The specification and use of multidimensional schemas and queries (including the design of cubes, dimensions, hierarchies, member formulas, the manipulation of query result sets, etc.) can be accomplished in a relatively straightforward manner, since the server directly supports (and exposes) the multidimensional paradigm.

The CWM Multidimensional metamodel does not attempt to provide a complete representation of all aspects of commercially available, multidimensional databases. Unlike relational database management systems, multidimensional databases tend to be proprietary in structure, and there are no published, widely agreed upon, standard representations of the logical schema of a multidimensional database. Therefore, the CWM Multidimensional Database metamodel is oriented toward complete generality of specification. Tool-specific extensions to the metamodel are relatively easy toformulate, and several examples are provided in Volume 2, Extensions, of the CWM Specification.

XML
XML is rapidly becoming a very important type of data resource, especially in the Internet environment. On the one hand, HTML is evolving to be XML-compliant; in the near future, all HTML documents can be expected to become valid XML documents. On the other hand, XML is quickly becoming the standard format for interchange of data and/or metadata (e.g., XMI). Therefore, XML documents (or streams) representing data and/or metadata can be expected to appear everywhere.

The XML package contains classes and associations that represent common metadata describing XML data resources. It is based on XML 1.0 [XML]. XML Schema is an ongoing activity in the W3C. As future standards are adopted by the W3C on XML Schema, this package will be revised and extended accordingly.

Analysis
Transformation
A key aspect of data warehousing is to extract, transform, and load data from operational resources to a data warehouse or data mart for analysis. Extraction, transformation, and loading can all be characterized as transformations. In fact,whenever data needs to be converted from one form to another in data warehousing, whether for storage, retrieval, or presentation purposes, transformations are involved. Transformation, therefore, is central to data warehousing.

The Transformation package contains classes and associations that represent common transformation metadata used in data warehousing. It covers basic transformations among all types of data sources and targets: object-oriented, relational, record, multidimensional, XML, OLAP, and data mining.

The Transformation package is designed to enable interchange of common metadata about transformation tools and activities. Specifically it is designed to:

· Relate a transformation with its data sources and targets. These data sources and targets can be of any type (e.g., object-oriented, relational) or granularity (e.g., class, attribute, table, column). They can be persistent (e.g., stored in a relational database) or transient.

· Accommodate both "black box" and "white box" transformations. In the case of "black box" transformations, data sources and targets are related to a transformation and to each other at a coarse-grain level. We know the data sources and targets are related through the transformation, but we don’t know how a specific piece of a data source is related to a specific piece of a data target. In the case of "white box" transformations, however, data sources and targets are related to a transformation and to each other at a fine-grain level. We know exactly how a specific piece of a data source is related to a specific piece of a data target through a specific part of the transformation.

· Allow grouping of transformations into logical units. At the functional level, a logical unit defines a single unit of work, within which all transformations must be executed and completed together. At the execution level, logical units can be used to define the execution grouping and sequencing (either explicitly through precedence constraints or implicitly through data dependencies). A key consideration here is that both parallel and sequential executions (or a combination of both) can be accommodated. The Transformation package assumes the existence of the following packages that represent types of potential data sources or targets: ObjectModel (object-oriented), Relational, Record, Multidimensional, XML, OLAP, and Data Mining.

The Transformation package is an integral part of the following packages: OLAP, Data Mining, Warehouse Process, and Warehouse Operation. In particular, the Transformation and Warehouse Process packages together provide metamodel constructs that facilitate scheduling and execution in data warehousing, and the Transformation and Warehouse Operation packages together provide metamodel constructs that enable data lineage in data warehousing.

OLAP
Online Analytical Processing (OLAP) is a class of analytic application software that exposes business data in a multidimensional format. This multidimensional format usually includes the consolidation of data drawn from multiple and diverse information sources. Unlike more traditionally structured representations (e.g., the tabular format of a relational database), the multidimensional orientation is a more natural expression of the way business enterprises view their strategic data. For example, an analyst might use an OLAP application to examine total sales revenue by product and geographic region over time, or, perhaps, compare sales margins for the same fiscal periods of two consecutive years. The ultimate objective of OLAP is the efficient construction of analytical models that transform raw business data into strategic business insight.

There are many ways to implement OLAP. Most OLAP systems are constructed usingOLAP server tools that enable logical OLAP structures to be built on top of a variety of physical database systems, such as relational or native multidimensional databases.

The following features are generally found in most OLAP systems:

· Multidimensional representation of business data.

· Upward consolidation of multidimensional data in a hierarchical manner, possibly with the application of specialized processing rules.

· The ability to navigate a hierarchy from a consolidated value to the lower level values forming it.

· Support for time-series analysis; i.e., OLAP users are generally concerned with data and consolidations at specific points in time -- By date, week, quarter, etc.

· Support for modeling and scenario analysis -- A user should be able to apply arbitrary “what-if” analyses to a result set without affecting the stored information.

· Consistent response times, regardless of how queries are formulated -- This is critical for effective analysis and modeling.

OLAP applications integrate well into the data warehousing environment, because a data warehouse provides relatively clean and stable data stores to drive the OLAP application. These data stores are usually maintained in relational tables that can be read directly by OLAP tools or loaded into OLAP servers. These relational tables are often structured in a manner that reveals the inherent dimensionality of the data (such as the ubiquitous Star and Snowflake schemas). Also, the data transformation and mapping services provided by a data warehouse can be used to supply OLAP systems with both metadata and data. Transformation-related metadata can be used to track the lineage of consolidated OLAP data back to its various sources.

Data Mining
Data mining is the application of mathematical or statistical processes for the purpose of extracting hidden knowledge from large data sets. This knowledge is subsequently used as actionable business intelligence.

Data mining techniques provide descriptive information that is manifest in inherent patterns or relations between the data. This can be achieved, for example, with algorithms for clustering or association rules detection (link analysis).

They also uncover correlations, often due to causal relationships, between the data and a specific target property. This information is used to make predictions about unknown data or future behavior. Techniques generating these models are known as supervised learning algorithms, and include classification and numeric prediction algorithms.

Whereas most analysis tools support the retrospective analysis of data sets by verifying a user’s hypotheses, data mining attempts to discover trends and behaviors without the need for guessing about possible relationships.

Data mining tools are particularly effective in the data warehouse environment, because data warehouses offer large quantities of cleansed business data for consumption by data mining tools. Also, the advanced query and analytical capabilities available in most data warehouses (e.g., relational databases, OLAP servers, and information visualization tools) can be used to great advantage by data mining tools in their formulation of models, and in the evaluation of those models by human users.

Information Visualization
The CWM Information Visualization metamodel defines metadata supporting the problem domain of “information publishing” or, more generally, “information visualization”.

Within the data warehousing environment, data is collected from numerous, diverse sources and transformed into a unified representation that facilitates the analysis of data for purposes of gaining business insight. Robust and flexible information visualization tools are key to the effective analysis of this information. Information visualization tools must be capable of understanding and preserving the “logical structure” of data warehouse information, while enabling the user to perform any number of “rendering transformations” on information content (e.g., displaying the same query result set in several different formats, such as a printed report, Web page, pie chart, bar graph, etc.).

Since information visualization is a very broad problem domain, with a diverse set of possible solutions and many evolving standards, the CWM Information Visualization metamodel defines very generic, container-like metadata constructs that either contain or reference more complex visualization mechanisms at the M1-level. These metadata structures are intended to support the minimal metadata required to interchange more

complex M1 models of visualization mechanisms.

Business Nomenclature
Business users of data warehouses need to have a good understanding of what information and tools exist in a data warehouse. They need to understand what the information means from a business perspective, how it is derived, from what data resources it is derived, and what analysis and reporting tools exist for manipulating and reporting the information. They may also need to subscribe to analysis and reporting tools, and have them run with results delivered to them on a regular basis.

The BusinessNomenclature package contains classes and associations that can be used to represent business metadata. Easy access to this business metadata enables business users to exploit the value of the information in a data warehouse. It can also aid technical users in certain tasks. An example is the use of common business terms and concepts for discussing information requirements with business users. Another example is accessing business intelligence tools for analyzing the impact of warehouse design changes.

The scope of the BusinessNomenclature package is restricted to the domain of data warehousing and business intelligence.

Management

Warehouse Process
The Warehouse Process package documents the process flows used to execute transformations. These process flows may be documented at the level of a complete TransformationActivity or its individual TransformationSteps. A WarehouseProcess object associates a transformation with a set of events which will be used to trigger the execution of the transformation.

Warehouse Operation
The Warehouse Operation package contains classes recording the day-to-day operation of the warehouse processes.

The package covers three separate areas:

· Transformation Executions

· Measurements

· Change Requests

References

[MOF] MOF, an adopted standard of the OMG. http://www.omg.org

[UML] UML, an adopted standard of the OMG. http://www.omg.org

[XMI] XMI, an adopted standard of the OMG. http://www.omg.org

[XML] XML 1.0, an adopted standard of the W3C. http://www.w3c.org

Glossary

MOF – Meta Object Facility 1.3 specification

UML – UML 1.3 specification

XMI – XMI 1.1 specification

OMA – Object Management Architecture object model

CORBA – Common Object Request Broker Architecture 2.0

XML – W3C XML 1.0 specification

OCL – Object Constraint Language

OLAP – Online Analytical Processing
CWM – Common Warehouse Metamodel 1.0 specification
OMG – Object Management Group

_1086102045

